Mid Bay Hardware List

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Name</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Apex Connector Mid - Channel Tube 26°</td>
<td>1</td>
<td>70.707</td>
</tr>
<tr>
<td>5</td>
<td>Ø65 Shoulder Connector 26°</td>
<td>2</td>
<td>70.840</td>
</tr>
<tr>
<td>6</td>
<td>Tensioner Set</td>
<td>2</td>
<td>70.840</td>
</tr>
<tr>
<td>7</td>
<td>Ø 65 Leg - 2.4m, 90°</td>
<td>2</td>
<td>70.783</td>
</tr>
<tr>
<td>10</td>
<td>Ø 65 Legs - 2.4m, 180°</td>
<td>2</td>
<td>70.783</td>
</tr>
</tbody>
</table>

Mid Bay Hardware List (Bay Quantity = 1)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Name</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Apex Connector Mid - Channel Tube 26°</td>
<td>1</td>
<td>70.707</td>
</tr>
<tr>
<td>5</td>
<td>Ø65 Shoulder Connector 26°</td>
<td>2</td>
<td>70.840</td>
</tr>
<tr>
<td>6</td>
<td>Tensioner Set</td>
<td>2</td>
<td>70.840</td>
</tr>
<tr>
<td>7</td>
<td>Ø 65 Leg - 2.4m, 90°</td>
<td>2</td>
<td>70.783</td>
</tr>
<tr>
<td>10</td>
<td>Ø 65 Legs - 2.4m, 180°</td>
<td>2</td>
<td>70.783</td>
</tr>
</tbody>
</table>

Mid Bay Fabric List

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Name</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10m x 5m Mid Roof</td>
<td>2</td>
<td>70.310.660</td>
</tr>
<tr>
<td>B</td>
<td>10m Mid Roof</td>
<td>1</td>
<td>70.310.630</td>
</tr>
<tr>
<td>C</td>
<td>5m x 2.4m Wall</td>
<td>8</td>
<td>60.025</td>
</tr>
</tbody>
</table>

End Bays Hardware List

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Name</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apex Connector GE - Channel Tube 26°</td>
<td>2</td>
<td>70.707</td>
</tr>
<tr>
<td>2</td>
<td>Apex Connector Mid - Channel Tube 26°</td>
<td>1</td>
<td>70.707</td>
</tr>
<tr>
<td>3</td>
<td>Ø65 Corner Connector LH 26°</td>
<td>2</td>
<td>70.845</td>
</tr>
<tr>
<td>4</td>
<td>Ø65 Corner Connector RH 26°</td>
<td>2</td>
<td>70.846</td>
</tr>
<tr>
<td>5</td>
<td>Ø65 Shoulder Connector 26°</td>
<td>2</td>
<td>70.840</td>
</tr>
<tr>
<td>6</td>
<td>Tensioner Set</td>
<td>8</td>
<td>70.840</td>
</tr>
<tr>
<td>7</td>
<td>Ø 65 Side Rafter - Channel Tube</td>
<td>6</td>
<td>70.510.006</td>
</tr>
<tr>
<td>9</td>
<td>Ø 50 Intermediate Purlin 5m</td>
<td>4</td>
<td>70.792</td>
</tr>
<tr>
<td>10</td>
<td>Ø 65 Eave Purlin 5m (2 Way)</td>
<td>4</td>
<td>70.787</td>
</tr>
<tr>
<td>11</td>
<td>10m Ø 50 Gable End Adjustable Eave</td>
<td>4</td>
<td>70.510.018</td>
</tr>
<tr>
<td>12</td>
<td>Base Rail - 4.97m</td>
<td>8</td>
<td>70.785</td>
</tr>
<tr>
<td>13</td>
<td>Ø 25 Brace bar</td>
<td>12</td>
<td>70.742</td>
</tr>
<tr>
<td>14</td>
<td>10m Apex Brace</td>
<td>1</td>
<td>70.510.016</td>
</tr>
<tr>
<td>15</td>
<td>Ø65 Leg - 2.4m. 90°</td>
<td>4</td>
<td>70.782</td>
</tr>
</tbody>
</table>

End Bays Fabric List

A 10m x 5m Mid Roof 2 70.310.660
B 10m Gable End Roof (4 Pieces) 1 70.310.630
C 5m x 2.4m Wall 8 60.025

Mid Bay Fabric List

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Name</th>
<th>Qty</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10m x 5m Mid Roof</td>
<td>1</td>
<td>70.310.660</td>
</tr>
<tr>
<td>C</td>
<td>5m x 2.4m Wall</td>
<td>2</td>
<td>60.025</td>
</tr>
</tbody>
</table>
1. Apex Connector GE - Channel Tube 26°
 - To use with Channel Tube rafter

2. Apex Connector Mid - Channel Tube 26°
 - To use with Channel Tube rafter

3. Ø65 Gable Connector LH 26°
 - To use with Channel Tube rafter and Ø65mm Leg

4. Ø65 Gable Connector RH 26°
 - To use with Channel Tube rafter and Ø65mm Leg

5. Ø65 Shoulder Connector 26°
 - To use with Channel Tube rafter and Ø65mm Leg

6. Tensioner Set
 - Includes: (x1) 16mm Reid Bar Nut, (x1) Tensioner Hook
 (x1) Tensioner Hook Adjuster

7. 10m Side Rafter - Channel Tube

8. Ø 65 Ridge Purlin 5m
 - 5m Bay

9. Ø 50 Intermediate Purlin 5m
 - 5m Bay

10. Ø 65 Eave Purlin 5m (2 Way)
 - 5m Bay, 2 way Brace Collar
10m CLIPFRAME GABLE END

Parts List

11. 10m Ø 50 Gable End Adjustable Eave
 - Includes: (x1) Gable End Eave Bar, (x1) Adjustable Eave Joint, (x1) M8 x 60 Hex Setscrew (x1) M8 Nyloc Nut, (x1) Lynch Pin, (x1) Tractor Pin (x1) Key Ring & Chain Set

12. Base Rail - 4.97m

13. Ø 25 Brace bar
 - Includes: (x1) Brace Bar, (x2) Lynch Pin (x2) Key Ring & Chain Set

14. 10m Apex Brace
 - Includes: (x1) Apex Brace Bar, (x2) Lynch Pin (x2) Key Ring & Chain Set

15. Ø65 Leg - 2.4m, 90°
 - 90° Brace Collar

16. Ø65 Leg - 2.4m, 180°
 - 180° Brace Collar

17. 10m Gable End Upright Set - 2.4m Leg
 - Includes: (x1) Gable Upright Leg, (x1) Adjustable Leg Base, (x1) Lynch Pin, (x1) Tractor Clip (x1) Key Ring & Chain Set
 - To use with Ø65mm Leg

18. Ø 65mm Base Foot
 - Includes: (x1) Base Fitting, (x2) Lynch Pin, (x1) Key Ring & Chain Set
 - To use with Ø65mm Leg

19. Roof Brace Cable Set
 - Includes: (x4) Ø5mm Cable, (x4) Turnbuckle (x4) Shackle
10m CLIPFRAME GABLE END

Staking / Ballasting Options

Minimum Staking for each Leg of typical 10m x 5m Bay

A
2 Pegs (Ø25x800mm) per Base Foot

B
Ballast 350kg per Base Foot attach to Foot and Shoulder Connector

C
2 Pegs (Ø25x800mm) per Base Foot + Guyed to x2 Pegs

Typical Stake Capacity 250kg in average soil conditions

Ballast Tie (use non slip pad under ballast ties)

For Max. Capacity Pegs Must be Driven Vertically

Wind Speed

- Nominal Stake Capacity 250kg. 1.5 x safety factor.
- 2 Stakes per base.

Over 50km/h - All Walling to be fitted and closed

Over 80km/h - All Fabric to be Removed from Frame

Frame may be left standing

Recommended Staking Options. Based on average Soil Conditions.

Consider Location factors
eg: on Exposed Hilltop, limit speed to 50% of above.

In poor soil use more stakes or longer stakes.

Ballast Tie (use non slip pad under ballast ties)

Engineered

Estimated

Engineered

Estimated

Engineered

700kg Ballast

350kg Ballast

500

455

455

348

357

224

90

10m CLIPFRAME GABLE END

Staking / Ballasting Options

Minimum Staking for each Leg of typical 10m x 5m Bay

A
2 Pegs (Ø25x800mm) per Base Foot

B
Ballast 350kg per Base Foot attach to Foot and Shoulder Connector

C
2 Pegs (Ø25x800mm) per Base Foot + Guyed to x2 Pegs

Typical Stake Capacity 250kg in average soil conditions

Ballast Tie (use non slip pad under ballast ties)

For Max. Capacity Pegs Must be Driven Vertically

Wind Speed

- Nominal Stake Capacity 250kg. 1.5 x safety factor.
- 2 Stakes per base.

Over 50km/h - All Walling to be fitted and closed

Over 80km/h - All Fabric to be Removed from Frame

Frame may be left standing

Recommended Staking Options. Based on average Soil Conditions.

Consider Location factors
eg: on Exposed Hilltop, limit speed to 50% of above.

In poor soil use more stakes or longer stakes.

Ballast Tie (use non slip pad under ballast ties)

Engineered

Estimated

Engineered

Estimated

Engineered

700kg Ballast

350kg Ballast

500

455

455

348

357

224

90

10m CLIPFRAME GABLE END

Staking / Ballasting Options

Minimum Staking for each Leg of typical 10m x 5m Bay

A
2 Pegs (Ø25x800mm) per Base Foot

B
Ballast 350kg per Base Foot attach to Foot and Shoulder Connector

C
2 Pegs (Ø25x800mm) per Base Foot + Guyed to x2 Pegs

Typical Stake Capacity 250kg in average soil conditions

Ballast Tie (use non slip pad under ballast ties)

For Max. Capacity Pegs Must be Driven Vertically

Wind Speed

- Nominal Stake Capacity 250kg. 1.5 x safety factor.
- 2 Stakes per base.

Over 50km/h - All Walling to be fitted and closed

Over 80km/h - All Fabric to be Removed from Frame

Frame may be left standing

Recommended Staking Options. Based on average Soil Conditions.

Consider Location factors
eg: on Exposed Hilltop, limit speed to 50% of above.

In poor soil use more stakes or longer stakes.

Ballast Tie (use non slip pad under ballast ties)

Engineered

Estimated

Engineered

Estimated

Engineered

700kg Ballast

350kg Ballast

500

455

455

348

357

224

90
Assemble Gable Portal

1. Join Shoulder Connector to Rafter
 - Use Button Lock
 note: Left & Right Shoulders for Gable Portal

2. Join Leg to Shoulder Connector
 - Use Button Lock
 note: corner leg has 90° collar

3. Join Rafters to Apex
 - Use Button Lock
 note: Gable End Apex

4. Join Base Fitting to Leg
 - Use Button Lock
 note: orientate pins to outside

5. Join Gable Upright to Apex
 - Use Lynch Pin

6. Join Gable Eave to Rafter Near Eave
 - Use Tractor Pin

7. Join Gable Eave to Upright
 - Use Lynch Pin

8. Join Base Plate & Adjustable Leg to Upright
 - Use Button Lock & Tractor Pin

9. Join Brace Bar to Leg & Gable Eave
 - Use Lynch Pin

10. Attach 2 Roof Brace Cables to Apex
Assemble Mid Portal

1. Join Shoulder Connector to Rafter
 - Use Button Lock
2. Join Leg to Shoulder Connector
 - Use Button Lock
 note: side leg has 180° collar
3. Join Rafters to Apex
 - Use Button Lock
 note: Mid Apex
4. Join Base Fitting to Leg
 - Use Button Lock
 note: orientate pins to outside
5. Join Apex Brace to Rafters
 - Use Lynch Pin
6. Attach 2 Roof Brace Cables to Apex Pin
 if Portal is adjacent to a Braced Bay
1. Assemble Portals on ground in position ready for rotating up

2. Attach Layout Bar & triangles to first & second portals, secure with lynch pin

3. Gable Fabric can be installed at this stage - refer page 13

4. Rotate First Portal Up
10m CLIPFRAME GABLE END

Portal Set Up

1. Join Eave Purlins to First Portal
 - Use Button Locks
2. Join 25mm Brace Bars to Eave Purlins
 - Use Lynch Pins
3. Join 25mm Brace Bars to Leg
 - Use Lynch Pin
4. Rotate First Portal to Vertical
 Support Eave near Second Portal
5. Rotate Second Portal to Vertical
6. Join Second Portal to Eaves
 - Use Button Lock
7. Join Brace Bar to Second Portal
 - Use Lynch Pin
1. Hook Ridge Purlin onto First Portal Apex
 - note: curved hook

2. Rotate Ridge Purlin up to Second Portal Apex
 - Use Purlin Fork, keep square to purlin
 - twist Purlin Fork to reduce sliding

3. Hook Ridge Purlin into Second Portal Apex
 - Ensure Engaged

4. Install Intermediate Purlins
 - same process as Ridge Purlin

5. Attach Roof Brace Wires to Shoulders
 - Use Shackle
 - Do not fully tension turnbuckle until roof fabric is in place.

Keep Layout Bars in place until bay is complete.
Continued Frame Assembly

1. Move Layout Bars to Next Bay
 - keep in place until bay complete

2. Continue Assembling Each Bay in same process as first.
 Consider braced bay placements.
 - Assemble Portal on Ground
 - Attach Layout bars
 - Attach Eave Purlins & Brace Bars
 - Rotate Portal Up & join to Eave Purlins & Brace bars
 - Attach Ridge Purlin & Intermediate Purlins
 - Fasten Brace wires if applicable

3. Peg down Base Feet
 - x2 Marquee Pegs per Foot
 - Use Mallet

Stake or Ballast Frame before Fabric Installed
1. Throw Pull Over Ropes Across
2. Attach Pull Over Ropes to Roof 'D'
 - hook facing fabric
3. Fit Keder Feeder in Rafter end
 - optional part
 - secure with hook around leg
4. Engage Keder in Rafter Extrusion
 - feed through Keder Feeder
5. Pull Panel Evenly
6. Tension Mid Panels
 6a. Mk2 - Use Packlocks
 6b. Mk3 Tension System
1. Attach Pull Over Ropes to Gable 'D'
2. Engage Keder in Rafter Extrusion
3. Pull Panel to Apex
4. Lace Gable together
5. Tension Gable Panels
 5a. Mk2 - Use Packlocks
 5b. Mk3 Tension System
1. Hook Wall onto Wall cord of Roof Pockets to inside
2. Lace Walls together behind leg
3. Insert Base Rail in Pocket
4. Attach Base Rail to Base Foot - Use Lynch Pin
10m CLIPFRAME GABLE END

Gable End Layout Examples

1. Plan Site Layout, Marquee Length and bays to be braced

General Rules
- Gable end portal each end (Red)
- Mid portals in between (Black)
- Roof brace wires each end bay (over 20m)
- Maximum 4 bays unbraced in succession.